
Clustered K-Center: Effective Replica Placement in
Peer-to-Peer Systems

Jian Zhou Xin Zhang Laxmi Bhuyan Bin Liu
Univ. of California, Riverside Carnegie Mellon Univ. Univ. of California, Riverside Tsinghua Univ.

jianz@cs.ucr.edu xzhang1@cs.cmu.edu bhuyan@cs.ucr.eduliub@mail.tsinghua.edu.cn

Abstract— Peer-to-Peer (P2P) systems provide decentraliza-
tion, self-organization, scalability and failure-resilience, but suf-
fer from high worst-case latencies. Researchers have proposed
various replication algorithms to place multiple copies of objects
across the network in pursuit of better performance for P2P
computing; nevertheless, they neither presented clear analysis nor
derived worst-case bound for their algorithms. In this paper, we
model the replica placement problem arising in real-world P2P
networks as a Clustered K-Center problem which we prove to
be NP-complete. Then we propose an efficient approximation al-
gorithm to this problem with a provable upper bound. Extensive
experiments have been conducted to demonstrate the effectiveness
and efficiency of our algorithm. The experimental results show
that our approach can run several orders of magnitude faster
than the optimal solution while being able to minimizing the
query latency.

Keywords: Replica Placement, Peer-to-Peer Network, Clus-
tered K-Center Problem and Approximation Algorithm

I. I NTRODUCTION

During the past few years, the emergence of Internet-scale
distributed systems including storage administration in global
companies, entertainment file sharing, and large distributed
database systems has led to extensive research on efficient
and scalable distributed computing architectures. Peer-to-Peer
(P2P) computing, among many other distributed computing
models, exhibit good scalability and stability. They have
proved to be an efficient and successful way for distributed
computing and file sharing over the Internet.

Recent Internet traffic measurements have shown that P2P
traffic increases significantly and becomes one of the major
traffic on the Internet. In some network segments, the P2P
traffic even goes beyond the traditional web traffic [15].
Whereas, the P2P traffic distribution in terms of volume,
connectivity and bandwidth among the peers are extremely
skewed [20] where peers may easily get overloaded. When
peers are overloaded, queries in the peers tend be dropped or
be kept in a queue for a long time which degrades the system
performance significantly in terms of success rate and client
perceived latency.

Many works have shown that existing P2P protocols may
not achieve a satisfactory worst-case client-perceived latency
for large scale, latency sensitive applications [19]. Moreover,
Peer-to-Peer system is known to be unstable as peers may join
and depart the system arbitrarily. Once a peer gets failed or
leaves its group without notifying others, it will result inquery

failures and the fault tolerance mechanisms in literature [17],
[2] to get back the data incur lots of overhead to the system.

Replication algorithms are believed to be an effective
method for improving the availability of data, enhancing
performance of query latency and load balancing [1]. By
distributing multiple copies of objects in the network and
forwarding each query to its nearest copy, we can effectively
reduce the query search latency and enhance the reliability
of the system. Recently, a number of replication algorithms
in P2P have been proposed to offload the workload as well
as to avoid the network congestion [5], [16]. However, these
replication strategies are of ad hoc paradigm and are lack of
a clear analysis of the performance gain.

Replica placement algorithm is essentially a tradeoff be-
tween query latency and memory overhead (i.e. the overhead
of storing the replications in the network). A good placement
mechanism should demonstrate a maximum cost benefit given
the memory space in accordance with an access pattern. This
paper considers a static replication data placement problem
aiming at minimizing the maximum query latency across the
network. More specifically, given a network of nodes, commu-
nication cost function and individual storage capacity of each
node, we study the problem of determining a placement of
replication objects on the nodes such that the maximum query
latency, taken over all nodes and all objects, is minimized.We
name the optimization problem as Clustered K-Center problem
as it bears some similarity to the classic k-center problem in
graph theory. The k-center problem tries to find the set ofk
centers in an arbitrary graph such that the maximum shortest
distance of all nodes to the nearest center is minimized. Our
Clustered K-Center problem differs from the classic k-center
problem in that instead of choosing a set ofk nodes to place
the replication and serve the others, it requires every node
to serve as a center (server) as well as a client at the same
time. In this paper, we prove that Clustered K-Center problem
is NP-complete and develops an approximation algorithm to
solve it in polynomial time.

The main contributions of this paper are described as
follows,

• We formulate the optimal replica placement problem in
P2P networks as a Clustered K-Center problem.

• We prove that the Clustered K-Center problem is NP-
complete and design an approximation algorithm with
quadratic time complexity.

• Comprehensive experiments have been conducted to



demonstrate the effectiveness and efficiency of our al-
gorithm.

The rest of the paper is organized as follows. In Section
II, we survey different replica placement protocols. Section
III models the replica placement problem and proves the NP-
completeness of the Clustered K-Center problem. Section IV
presents our approximation algorithm in details. In section V,
we analyze the time complexity of our algorithm and give
a formal proof for the performance bound. Finally, experi-
mental results are demonstrated in section VI and section VII
concludes the paper.

II. RELATED WORK

The replica placement problem has been studied extensively
in many disparate fields, such as file assignment problem
[7], file allocation [23], distributed databases [13], dataman-
agement [14], etc. However, these fields require the replica
placement algorithms to take into consideration the data writes,
consistency, update propagation and compounded guarantees
which are not major concerns in a read operation oriented P2P
systems.

The majority works for replica placement in P2P systems
are focused on content delivery networks (CDN [24], [10],
[11] ), where CDN nodes cooperate with each other to satisfy
the requests made by end users. Usually, these problems have
their own objective function with different constraints such as
storage capacity, link capacity, node bandwidth capacity,etc.
In [11], the authors try to minimize the average query latency
with storage constraint. The replica placement problem is for-
mulated as an integer linear programming problem and some
heuristic algorithms are proposed. However, the author does
not provide an analysis of the performance bound. In [24],
a simple hierarchically placement algorithm is proposed to
minimize the average access time with bandwidth constraints
and the proof of the constant factor approximation is provided.
Whereas the objective function is not the maximum client-
perceived latency as we stress in this paper. In [10], the authors
propose to place the tracers optimally such that the maximum
distance from any client to its nearest tracer is minimized,
but only part of the nodes are selected as tracers while others
only act as clients which may deteriorate load balancing in
P2P systems .

Generally, the problem of determining optimal replica place-
ment in an arbitrary network is modeled as a classical graph
theory problem, such as facility location, k-median and k-
center. In the facility location problem, there is an open-up
cost for replicating a copy at each node, and its goal is to
minimize the sum of the open-up costs and the total query
costs. While for the k-median and k-center problems, the
objective is to minimize the total query latency and maximum
latency respectively given the number of the replicas. All
of the problems are NP-complete and [4], [12] propose the
approximation algorithms. As the worst-case latency is usually
the major concern in a QoS (quality of service) oriented
network [22], the k-center problem is most closely related to
our problem. However, the k-center problem is only suitable

for putting the replicas for one service or one object (or one
group of objects) on the selectedk centers. Other peers in
the network cannot contribute to the system as much as thek
centers. This is the case for all the facility location, k-median
and k-center problem. Only recently, Baev and Rajaraman [3]
propose a 20.5-approximation algorithm for replica placement
on all nodes in the network with storage constraint using a
rounding technique of the integer linear programming. Their
objective function is the average query latency. Our problem
has not take into consideration the open-up cost of placing
replicas since in a query intensive P2P system the open-up
cost for placing the replicas is typically orders of magnitude
smaller than the cost generated by queries.

III. PROBLEM FORMULATION

We consider a set ofn peers in a distributed peer-to-peer
network, each peer stores various objects like video files, web
pages or other arbitrary documents. Queries requesting fora
specific object may originate from any node at any time within
the network and they are all forwarded to the host node1 where
the object is placed. Here, the latency of a query is denoted
by the total distance of the route from the querying node to
the host node.

In order to reduce the query latency, researchers propose
to replicate the objects on other nodes in the network. The
problem becomes, given the replication numberk, how to find
the bestk replication nodes, denoted asR = r1, r2, ..., rk, such
that the maximum latency to fetch the nearest copy of object is
minimized. Here, we assume the system is able to forward the
queries to the nearest replicationri using existing mechanisms
[21]. As such an effect, the network can actually be viewed asa
forest ofk search trees with each tree rooted at one replication
noderi. Thus all thek roots cooperatively serve the queries
for the objects, and in this way the workload is shared among
them. This can be modeled as a well-known graph problem: k-
center problem which is described as following. Given a graph
G = (V,E) representing an overlay network topology where
V denotes the set of nodes andE denotes the connections
between the nodes, and given an integerk, compute a subset
of k verticesR ⊆ V , such that the maximum distance between
any vertexv ∈ V and its nearest centerri ∈ R is minimized.
The k-center problem is known to be NP-complete [12], and
there exist several constant-factor approximation algorithms in
the literature [9].

However, our problem is different. Consider a P2P network
with thousands of objects and all of them are replicated on the
samek centers, thek centers may easily get overloaded by
the huge amount of queries. Moreover, the memory capacities
of the k centers will be quickly saturated as the replications
increase. The whole P2P systems becomes extremely load
unbalanced. In other words, it is not a good idea to use the
samek centers for all the objects when replicating the objects.
For load balance purpose, nodes are required to keep roughly

1Host node for objecto is a node which containso and is ready to share
with others.



the same number of objects across the network which may
help to ensure the queries are evenly distributed among the
nodes. Thus in our replication system, objects are grouped
together and each group of objects can be placed on one
set of k centers. Essentially, the network is partitioned into
m2 non-overlapping groups (g1, g2, ..., gm) of k centers where
V = g1 ∪ g2 ∪ ... ∪ gm and each group serves for a group of
objects, here we assumen can be divided byk integrally and
m = n/k. For anygi(i ∈ [1,m]), there is a cover radiusdi

which is the maximum distance between any vertexv ∈ V and
its nearest centerr ∈ gi. Our problem now is given a graph
G = (V,E) with n nodes, and given an integerk, computem
non-overlapping groups such that the maximum cover radius
among all the groups is minimized. From the graph coloring
view, the problem can also be described as follows: given
a graph withn nodes and a parameterk, color the vertices
with m colors so that each color class hask vertices. The
objective is to find the small valueD such that the vertices
within distanceD of any vertex in the network contain at least
one vertex of every color.

Theorem 3.1: The decision problem ofClustered K-Center
problem is NP-complete.

Proof: In order to prove that our optimization problem
is NP-complete, we first formulate the problem as a decision
problem. Given an arbitrary undirected graphG = (V,E)
and k, let D(i, j) denote the distance between nodei and j
wherei, j ∈ V . Given a target distanceT , we ask if there is
a clusteringg1, g2, ..., gm such that

max
i

max
v∈V

min
r∈gi

D(v, r) ≤ T (1)

We prove the NP-completeness of this problem by showing
that it belongs in NP and then we reduce the domatic number
problem to a special case of our problem. This proves the
NP-completeness.

The problem is easily seen to be in NP. Given a clustering
g1, g2, ..., gm and the number of hopsT , we can verify in
polynomial time whether the worst case latency (formulated
in equation 1) is less thanT hops.

Next, we take a graphG = (V,E) where the weight of
each edgecij is 1 if (i, j) ∈ E. We consider the special case
where T = 1 and all the edges inE have weight1 (That
is cij = 1 ∀(i, j) ∈ E). In this case, we try to partition the
network intom disjoint groupsg1, g2, ..., gm in a way such that
for each groupgi, all the vertices inG are directly connected
to any vertices within the groupgi. Let Ni denote the vertices
directly connected to vertices ingi, the following equation is
true for the special caseG.

Ni = {vi|∃j ∈ gi, (i, j) ∈ E}, ∀i,Ni ∪ gi = V (2)

In other words, each groupgi is a dominating set of the
graph G. Thus, our problem is identical to the well-known
NP-complete domatic number problem [8]. Given that our
Clustered K-Center problem belongs in NP problem and that

2Number of groups of centers.m = n/k

the domatic number problem reduces to it, we prove that our
replica placement problem is NP-complete.

IV. A PPROXIMATION ALGORITHM

As shown in section III, the replica placement problem
cannot be solved easily in a large scale P2P system as it is NP-
complete. In this section, we present a polynomial algorithm
for the Clustered K-Center problem which guarantees the
worst case latency is no more thanm−1 factor of the optimal
solution.

Recall thatG = (V,E) represents the network topology
where each vertex inV is a peer in the network and each
edge inE represents a link between the connected two peers.
The latency of the link is denoted by an edge weightcei

where ei ∈ E. In our algorithm, we useGd = (V,Ed) to
denote the distance graph ofG where each pair of vertices
in V are connected, soGd is actually a clique. The weight
of the edge between nodevi and vj in Gd is the sum of the
total edges’ weights on the shortest path fromvi to vj in G.
One observation is any distance graph satisfies the triangle
inequality cij ≤ cik + ckj for all i, j, k ∈ E, refer to lemma
5.1 for detailed proof.

It is not hard to see that the value of the optimal solution in
Clustered K-Center problem is actually one of the shortest path
between two nodes inG. Therefore, for any arbitrary graph
G = (V,E), the value of the optimal solution for cluster k-
center problem is one of the edge weights in the distance graph
Gd. Herein, the first step is to construct a distance graphG of
the topology by calculating the shortest distance between every
pair of nodes inG. This can be done by running a Dijkstra
algorithm [6]. Furthermore, we label the edges ofEd so that
ce1

≤ ce2
≤ ... ≤ cel

wherel =
(

n
2

)

.
Begin with a graphG0 = (V,E0) whereE0 = {ej |j ≤ 0},

we interactively add one edge with the smallest weight from
the remaining edges that have not been added to the graph in
each round. That is to say, after theith round of the procedure,
the produced graph isGi = (V,Ei) whereEi = {ej |j ≤ i}.
Every time, a test is made to check whether the current graph
Gi contains an appropriate feasible subgraph for clusters ofk
centers. However, it is NP-complete to evaluate whether the
graph is eligible for producing clusters ofk centers or not.
Our strategy is to relax the decision procedure a bit such that
it can finish in polynomial time with a provable performance
bound for the worst case latency.

For each iteration, the graphGi is evaluated to see whether
it containsk connected components each with sizem. This can
be solved easily by a DFS (Depth First Search) traversal of the
graph which is anO(v+e) algorithm (here,v ande represent
the number of vertices and edges in the graph respectively).
Once we get a graphGi satisfying the above condition, by the
definition of the power of graph3, it is not hard for us to get
clusteredk centers inGm−1

i . As in Gi, each vertexvi ∈ V is

3Here, the power of graph is defined as follows: given an arbitrary graph
G = (V, E) and t is a positive integer, let thetth power ofG be Gt =
(V, Et), where there is an edge(u, v) in Gt wherever there is a path from
u to v with at mostt edges in G.



Approximation Algorithm
Input Parameters:

Underlying Topology:G = (V, E)
Number of Duplications:k (k ∗ m = n)

Output Parameters:
m groups of centersg1, g2, g3...gm

begin

(1) Construct a distance graphGd = (V, Ed) from the
network topologyG by computing all pairs of shortest distance

(2) Sort the edges inEd

ce1
≤ ce2

≤ ... ≤ cel
, wherel =

(

n

2

)

;
(3) Initialize i = 0;
(4) Loop

i = i + 1;
Gi = (V, Ei) whereEi = {ej |j ≤ i};
Condition: Gi =

⋃k

i=1
Si ∀i, |Si|%m = 0

Si is a connected component
if (Condition is false)

Repeat Loop;
else

Gm−1

i =
⋃k

i=1
Ci ∀i, |Ci| = m

Ci

⋂

Cj = ∅ ∀i, j ∈ 1, 2, ..., k
(5) Greedily select one node from each cluster

Ci to form a groupgj

(6) Finish. Returng1, g2, g3...gm

end

Fig. 1. Approximation Algorithm for the Clustered K-Center Problem

within a connected component containingm vertices (denoted
asVi including vi), every two vertices in anyVi needm − 1
steps to reach each other. According to the definition of power
of graph, everyVi is a clique with|Vi| nodes inGm−1

i . It is
easy to see thatGm−1

i can be partitioned intok cliques each
with m members. Now, we choose one vertex from each clique
exclusively to form a group ofk centersgi. Thus, we cluster
the networkG into m groups where each group acts ask
centers for part of the objects in the system. If the test fails,
we repeat the procedure to add one more edge. Otherwise, we
produce a power of(m−1) of the current graph and form the
m clusters out of it.

V. A NALYSIS

We demonstrated how our algorithm works to cluster the
nodes in the network to form the groups ofk centers in section
IV. In this section, we first analyze the time complexity of the
algorithm and then show that the worst case latency produced
by our algorithm is no more than(m−1) factor of the optimal
solution.

A. Time Complexity Analysis

In this subsection, we analyze the time complexity of our
approximation algorithm and show that it can be finished
within O(n4) wheren is the number of nodes in the network.

At the very beginning, we construct a distance graph by
calculating the shortest distance among all pairs of nodes in
G which is a multiple source shortest path problem. To our
knowledge, a single source multiple destination shortest path
problem can be solved by a Dijkstra’s algorithm with run time
O((n+e)logn) wheren ande denote the number of nodes and

edges respectively. When constructing the distance graph, it is
n time of Dijkstra’s algorithm which isO(n(n+e)logn). Since
the number of edges is at most

(

n
2

)

= n(n − 1)/2, the time
complexity for constructing the distance graph isO(n3logn).
When we label the edges inGd in an ascending order, it is
actually a sort algorithm for the

(

n
2

)

edges. That is at most
O(n2logn).

We can further see that the number of the loop iterations
cannot exceed

(

n
2

)

times. During each iteration, we run a
DFS (Depth First Search) to traverse the graph to check the
eligibility of Gi which runs in O(n + e). Thus, the time
complexity for the loop isO(n2(n + e)).

The time complexity of our algorithm is the sum of the
three partsO(n3logn) + O(n2logn2) + O(n2(n + e)), which
makesO(n4).

B. Approximation Ratio

In this subsection, we place a bound on the bottleneck
distance in the clusteredk centers produced by the algorithm.
Let dopt denote the optimal solution anddG denote the worst
case latency to the nearest center among all them groups of
centers, we prove in theorem 5.4 thatdG ≤ (m− 1) ∗dopt for
any arbitrary graph. Here,approximation ratio is dG/dopt.

As far as we know, most of the network topologies do not
necessarily follow the triangle inequality metric. For example,
the direct link between nodei and j might be very slow due
to the network congestion while another path linkingi and j
might be relatively faster. However, the distance graph forany
network satisfies the metric.

Lemma 5.1: Let G = (V,E) be an arbitrary subgraph of
a distance graphGd = (V,Ed), then G satisfies triangle
inequality.

Proof: Suppose that there exists an edge(i, j) ∈ E such
that there is a nodek ∈ V, k 6= i ∩ k 6= j which produces
cij > cik + ckj . This means there exists a shorter path from
node i to node j than the existing direct edge in distance
graph. This contradicts to the definition of the distance graph
which has the length of the shortest path to represent the edge
weight.

If G = (V,E) is an arbitrary graph, letmax(G) =
maxei∈E cei

. Our approximation technique is based on some
nice properties of the power of graph which are demonstrated
as the following Facts.

Fact 5.2: Let G be any subgraph of a distance graph, then
max(Gt) ≤ t ∗ max(G).

Proof: According to the definition of power graph, a path
with no more thant edges inG produces an edge inGt. Since
the weight of each edge on the path inG is at mostmax(G),
the sum of all the edges’ weights on the path is no more than
t∗max(G). By the triangle inequality, the weight of any edge
(i, j) in Gt is no more than that of the entire path fromi to
j. Therefore the weight of(i, j) is at mostt ∗ max(G).

For the Clustered K-Center problem, there is a set of feasible
subgraphsS of distance graphGd each element of which has
non-overlappingm groups of k centers. Among all of the



subgraphs, the optimal solution tries to find the best subgraph
G in S with minimizedmax(G). In the algorithm presented
above, we test in each iteration whether theGm−1

i contains a
subgraphG′ ∈ S.

Lemma 5.3: If G = (V,E) contains a feasible subgraph in
S for Clustered K-Center problem, every vertex inV must
have degree more thanm − 1.

Proof: Let g1, g2, ..., gm denote the groups of thek
centers as a feasible solution for the Clustered K-Center
problem. By the definition of K-Center , every vertexv in
V is connected to its nearest center. Thus, unlessv is a center
itself, it will be connected to one center ingi, i = [1,m]. That
is to say, for any vertexv ∈ gi, it is connected to at least one
node in each group except the one it belongs to. Thus, any
vertex must be connected tom − 1 nodes inG.

Theorem 5.4: For any network topologyG = (V,E) with
triangle inequality metric,dG ≤ (m − 1) ∗ dopt.

Proof: Suppose the procedure in Fig.1 terminates at
round s where the graph isGs. In order to prove this result,
we show that any graphGi (i < s) before the termination
does not contain a subgraph which is a feasible solution to the
Clustered K-Center problem whileGm−1

s contains a feasible
solution.

Now we prove thatGi does not contain a feasible solution
to the problem. Suppose that there is a feasible solution for
someGi, then according to lemma 5.3, every vertex inGi must
have direct neighbors more thanm−1. That means any vertex
is in a connected component with size at leastm. However,
any Gi produced by the procedure at least has one vertex not
contained in a connected component. This contradiction proves
that any graph beforeGs cannot be grouped intom groups of
k centers. This actually indicates that

∀i ≤ s cei
≤ dopt (3)

Next, we show thatGm−1

s contains a subgraph of the fea-
sible solution. LetV1, V2, ..., Vk denote the disjoint connected
components inGs. From the procedure, we know that the
size ofVi is ensured to bem. By the definition of the power
of graph, the graph induced onVi in Gm−1

s is a clique on
|Vi| vertices as every vertex in anyVi needsm − 1 edges
to reach each other. Now, we choose one vertex from each
clique to form a group of centers exclusively, thus we get
non-overlapping groupsg1, g2, g3, ..., gm where each group is
a dominant set ofGs. The worst case latency in our solution
dG is actually one of the edge inGm−1

s . The longest edge in
Gs is ces

. By Fact 5.2, the graphGm−1

s has edges no longer
than (m − 1) ∗ ces

. From equation 3, we get the following
result.

dG ≤ (m − 1) ∗ ces
≤ (m − 1) ∗ dopt

VI. PERFORMANCEEVALUATION

In this section, we evaluate the performance of our ap-
proximation algorithm for the Clustered K-Center problem.
Extensive experiments are conducted under various network
topologies and a wide range of network size.

In the experiments, the network topology is generated with a
GT-ITM generator [25] which can efficiently generate Transit
Stub models that accurately reflect the topological properties
of the real internet. TS models the networks using a two-level
hierarchy of routing domains, with transit domains intercon-
necting the lower level stub domains. By default, the latency
of intra-transit domain links, stub-transit links and intra-stub
domain links are set to 20ms, 5ms and 2ms respectively[18].

To highlight the effectiveness and efficiency of our al-
gorithm, we compare our algorithm against two other ap-
proaches, the optimal approach and a natural greedy approach.
In the optimal approach, we identify the optimal solution
using a brute force search which systematically enumerates
all possible candidates for the solution. As we showed in
sectionIII, the Cluster K-Center problem is a NP-complete
problem which indicates that it cannot be solved in polynomial
time. Therefore, the optimal solution can only be achieved by
evaluating all the possible configurations whose time com-
plexity is exponential to the network sizen. With the greedy
approach, them clusters of centers are identifies one by one.
For the first cluster ofk centers, we compute the bestk
centers using a greedy approximation algorithm for the k-
center problem [9] and remove the cluster from the original
graph. In the remaining graph, the second cluster is identifies
with the same mechanism and vice versa. The time complexity
of the greedy approach isO(n3logn).

Approximation algorithm is an approach to attacking diffi-
cult optimization problems efficiently. The approximationratio
and time complexity are two important metrics to evaluate
the performance of approximation algorithms. In the following
subsections, we study the performance of our algorithm against
various network topologies and compare the approximation
ratio and time complexity of various approaches.

A. Approximation Ratio

In this subsection, we examine how well our algorithm
approximate the optimal solution of the Clustered K-Center
problem by depicting the approximation ratio of our algorithm.

The Transit-Stub network topology is used here since it is
proven to be correlate well with the internet structure. The
number of duplications of objects are automatically increased
as the network size increase to achieve the target performance.
For easy comparison among different schemes, we set the
number of duplicationsk to ben/4 in our experiment. That is
to say, the number of groupsm is four by default. As we
proof in section III, Clustered K-Center problem is a NP-
complete problem which cannot be solved in polynomial time.
In other words, it is very computation intensive even for a
small scale topology. For comparison, we compute a tight
lower bound for the optimal solution for any graph withO(n2)
time complexity.

As shown in Fig.2(a), our algorithm approximates the
optimal solution with ratio less than three consistently. This
verifies our analysis in section V which claims that our
approach is am − 1 approximation algorithm with arbitrary



 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

1024512256128643216

A
pp

ro
xi

m
at

io
n 

R
at

io
 d

G
/d

op
t

Network Size

Approximation

Greedy

Optimal

(a) Approximation Ratio

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 1  1.5  2  2.5  3  3.5  4  4.5
P

D
F

Approximation Ratio

Greedy

Approximation

(b) PDF of Approximation Ratio

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 8  10  12  14  16  18  20

A
ve

ra
ge

 R
un

ni
ng

 T
im

e(
s)

Network Size

Approximation
Greedy
Optimal

(c) Average Running Time

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 8  10  12  14  16  18  20

M
ax

im
um

 R
un

ni
ng

 T
im

e(
s)

Network Size

Approximation
Greedy
Optimal

(d) Worst Case Running Time

Fig. 2. Performance Analysis

network topology. With the varying network size, our algo-
rithm outperforms the natural greedy approach consistently. In
Fig. 2(b), we depict the probability distribution function(PDF)
of the approximation ratio for our algorithm and the greedy
algorithm. Both of the greedy approach and our approximation
algorithm follow the normal distribution. However, the greedy
approach shows a heavy tail which indicates that it performs
badly in some particular cases. While approximation ratio
of our algorithm demonstrates a normal distribution with the
worst case withinm − 1 and the average case aroundm−1

2
.

B. Running Time

In this subsection, we compare the average and the worst
case running time of the Clustered K-Center problem using
our approximation algorithm, the greedy heuristic and brute
force search. From the previous analysis, we know that the
time complexity of brute force search increase exponentially
with the network size while our algorithm has quadratic time
complexity. This trend can be clearly captured in Fig. 2(c)
and 2(d) where our algorithm and the greedy approach is
several orders of magnitude faster than the brute force search
algorithm. Although the greedy heuristic is faster than our
approximation approach in the worst case, our algorithm
outperforms the greedy heuristic in the average case.

From the experiments, we demonstrate that our approxima-
tion algorithm can approximate the optimal solution consis-
tently well and is several orders of magnitude faster than the
brute force search.

VII. C ONCLUSION

In this paper, we show that the replica placement problem
in P2P networks can be represented as a new Clustered K-
Center problem (which essentially differs from the classick-
center problem) and is proven to be NP-complete. To solve
this problem, we bring forward an approximation algorithm
in the form of a distance graph for the network topology;
when our defined feasibility condition holds at a certain point,
the replica placement solution can be built out of (m-1) power
of current distance graph. Theoretical analysis shows thatour
algorithm incursO(n4) time complexity and the worst-case
latency yielded by our algorithm is no more than (m-1)-factor
of the optimal solution.

REFERENCES

[1] S. Androutsellis-Theotokis, D. Spinellis, “A survey ofpeer-to-peer content
distribution technologies”,ACM Comput, 2004.

[2] J. Aspnes, Z. Diamadi, and G. Shah, “Fault-tolerant routing in peer-to-
peer systems”,PODC, July 2002.

[3] I. Baev and R. Rajaraman, “Approximation algorithms for data placement
in arbitrary networks”,In SODA, 2001.

[4] M. Charikar and S. Guha, “Improved combinatorial algorithms for the
facility location and k-median problems”,In FOCS, 1999.

[5] Y. Chen, R. Katz and J. Kubiatowicz, “Dynamic Replica Placement for
Scalable Content Delivery”,IPTPS, 2002

[6] E. W. Dijkstra, “A note on two problems in connetion with graphs”,
Numerische Mathematik , 1959.

[7] L.W. Dowdy and D. V. Foster, “Comparative Models of the File Assign-
ment Problem,”ACM Computer Surveys, 14(2), pp. 287C313, 1982.

[8] U. Feige, M. M. Halldorsson, and G. Kortsarz, “Approximating the
domatic number”,32nd Ann. ACM Symp. on Theory of Computing, 2000

[9] T. F. Gonzalez, “Clustering to Minimize the Maximum Intercluster
Distance”,Theoretical Computer Science, June 1985.

[10] S. Jamin, C. Jin, Y. Jin, D. Raz, Y. Shavitt, and L. Zhang, “On the
Placement of Internet Instrumentation”,IEEE INFOCOM, March 2000.

[11] J. Kangasharju, J. Roberts, and K. W. Ross, “Object Replication Strate-
gies in Content Distribution Networks”,WCW’01, June 2001.

[12] O. Kariv and S. Hakimi, “An algorithm approach to networklocation
problems. I. thep-center”, SIAM Journal of Applied Mathmatics 37, 1979.

[13] D. Levin and H. Morgan, “Optimizing Distributed Data Bases C A
Framework for Research,”AFIPS, 1975.

[14] B. Maggs, F. Meyer auf der Heide, B. Vocking, and M. Westermann,
“Exploiting Locality for Data Management in Systems of LimitedBand-
width”, Symp. on Foundations of Computer Science, Oct. 1997.

[15] M. Meeker, “The state of the Internet”,2006 Web 2.0 Summit, Nov.
2006, San Francisco, USA.

[16] C. G. Plaxton, R. Rajaraman, A. W. Richa, “Accessing Nearby Copies
of Replicated Objects in a Distributed Environment”,SPAA, 1997.

[17] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A
Scalable Content-Addressable Network”,ACM SIGCOMM, Aug. 2001.

[18] S. Ratnasamy, M. Handley, R. Karp and S. Shenker, ”Topologically
Aware Overlay Construction and Sever Selection”,IEEE Infocom, 2002.

[19] S. Rhea, B. Chun, J. Kubiatowicz, S. Shenker, “Fixing the Embarass-
ing Slowness of OpenDHT on PlanetLab”,Proceedings of the Second
Workshop on Real, large Distributed System (WORLDS’ 05), 2005.

[20] S. Sen and J. Wang, “Analyzing Peer-to-Peer Traffic Across Large
Networks”, ACM/IEEE Transactions on Networking, 12(2), April 2004.

[21] X. Tang and J. Xu, “On replica placement for QoS-aware content
distribution”, In the Proc. of INFOCOM, 2004.

[22] L. Shu and M. Young, “Real-time concurrency control withanalytic
worst-case latency guarantees”,In Proc. of the 10th IEEE Workshop on
Real-Time Operating Systems and Software, N.Y., May 1993.

[23] R. Tewari and N. Adam, “Distributed File Allocation withConsistency
Constraints,”ICDCS, 1992, pp. 408C415.

[24] A. Venkataramanj, P. Weidmann, and M. Dahlin, “BandwidthCon-
strained Placement in a WAN,”PODC, August 2001.

[25] E. Zegura, K. Calvert and S. Bhattacharjee, ”How to Model an Inter-
network”, Proceedings of IEEE Infocom, CA, MAY 1996.


